Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocr Regul ; 56(2): 115-125, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35489050

RESUMO

Objective. Single-walled carbon nanotubes (SWCNTs) are able to cross the blood-brain barrier, penetrate through the cell membrane, and accumulate in the cell nucleus, which purposefully allows their use in the health sciences as imaging probes and drug carriers in the cancer therapy. The aim of this study was to investigate the effect of low doses of SWCNTs on the expression of microRNAs associated with the cell proliferation and the brain development in zebrafish (Danio rerio) embryos. Methods. The zebrafish embryos (72 h post fertilization) were exposed to low doses of SWCNTs (2 and 8 ng/ml of medium) for 24 or 72 h. The microRNAs (miR-19, miR-21, miR-96, miR-143, miR-145, miR-182, and miR-206) expression levels were measured by quantitative polymerase chain reaction analysis. Results. It was found that low doses of SWCNTs elicited dysregulation in the expression of numerous cell proliferation and brain development-related microRNAs (miR-19, miR-21, miR-96, miR-143, miR-145, miR-182, and miR-206) in dose- (2 and 8 ng/ml of medium) as well as malformations in the zebrafish embryos brain development in a time-dependent (24 and 72 h) manner. Conclusion. Taken together, the present data indicate that the low doses of SWCNTs disturbed the genome functions and reduced the miR-19, miR-21, miR-96, miR-143, miR-145, miR-182, and miR-206 expression levels in dose- and time-dependent manners and interrupted the brain development in the zebrafish embryos indicating for both the genotoxic and the neurotoxic interventions.


Assuntos
MicroRNAs , Nanotubos de Carbono , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
2.
Curr Res Toxicol ; 2: 64-71, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345851

RESUMO

The unique properties of single-walled carbon nanotubes (SWCNTs) make them viable candidates for versatile implementation in the biomedical devices. They are able to cross the blood-brain barrier, enter cells and accumulate in cell nuclei. We studied the effect of these carbon nanoparticles on the expression of genes associated with endoplasmic reticulum stress and proliferation, cell viability and cancerogenesis as well as microRNAs in normal human astrocytes. We have shown that treatment of normal human astrocytes by small doses of SWCNTs (2 and 8 ng/ml of medium for 24 hrs) affect the expression of DNAJB9, IGFBP3, IGFBP6, CLU, ZNF395, KRT18, GJA1, HILPDA, and MEST mRNAs as well as several miRNAs, which have binding sites at 3'-UTR of these mRNAs. These changes in the expression profile of individual mRNAs introduced by SWCNTs are dissimilar in magnitude and direction and are the result of both transcriptional and posttranscriptional mechanisms of regulation. It is possible that these changes in gene expressions are mediated by the endoplasmic reticulum stress introduced by carbon nanotubes and reflect the disturbance of the genome stability. In conclusion, the low doses of SWCNTs disrupt the functional integrity of the genome and possibly exhibit a genotoxic effect.

3.
Endocr Regul ; 55(2): 72-82, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020533

RESUMO

Objective. The aim of the present investigation was to study the impact of glucose and gluta-mine deprivations on the expression of genes encoding EDN1 (endothelin-1), its cognate receptors (EDNRA and EDNRB), and ECE1 (endothelin converting enzyme 1) in U87 glioma cells in response to knockdown of ERN1 (endoplasmic reticulum to nucleus signaling 1), a major signaling pathway of endoplasmic reticulum stress, for evaluation of their possible implication in the control of glioma growth through ERN1 and nutrient limitations. Methods. The expression level of EDN1, its receptors and converting enzyme 1 in control U87 glioma cells and cells with knockdown of ERN1 treated by glucose or glutamine deprivation by quantitative polymerase chain reaction was studied. Results. We showed that the expression level of EDN1 and ECE1 genes was significantly up-regulated in control U87 glioma cells exposure under glucose deprivation condition in comparison with the glioma cells, growing in regular glucose containing medium. We also observed up-regulation of ECE1 gene expression in U87 glioma cells exposure under glutamine deprivation as well as down-regulation of the expression of EDN1 and EDNRA mRNA, being more significant for EDN1. Furthermore, the knockdown of ERN1 signaling enzyme function significantly modified the response of most studied gene expressions to glucose and glutamine deprivation conditions. Thus, the ERN1 knockdown led to a strong suppression of EDN1 gene expression under glucose deprivation, but did not change the effect of glutamine deprivation on its expression. At the same time, the knockdown of ERN1 signaling introduced the sensitivity of EDNRB gene to both glucose and glutamine deprivations as well as completely removed the impact of glucose deprivation on the expression of ECE1 gene. Conclusions. The results of this study demonstrated that the expression of endothelin-1, its receptors, and ECE1 genes is preferentially sensitive to glucose and glutamine deprivations in gene specific manner and that knockdown of ERN1 significantly modified the expression of EDN1, EDNRB, and ECE1 genes in U87 glioma cells. It is possible that the observed changes in the expression of studied genes under nutrient deprivation may contribute to the suppressive effect of ERN1 knockdown on glioma cell proliferation and invasiveness.


Assuntos
Endorribonucleases/metabolismo , Endotelina-1/metabolismo , Enzimas Conversoras de Endotelina/metabolismo , Glioma/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Linhagem Celular Tumoral , Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...